Search results for "interpretable AI"

showing 5 items of 5 documents

Adaptive sparse representation of continuous input for tsetlin machines based on stochastic searching on the line

2021

This paper introduces a novel approach to representing continuous inputs in Tsetlin Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds during the learning process. Two standard TAs finally decide whether to include the resulting features as part of the clause. In this way, only four automata altogether represent one continuous feature (instead of potentially h…

Stochastic Searching on the Line automatonBoosting (machine learning)decision support systemTK7800-8360Computer Networks and CommunicationsComputer scienceDiscriminative modelFeature (machine learning)Electrical and Electronic EngineeringArtificial neural networkrule-based learninginterpretable machine learninginterpretable AISparse approximationAutomatonRandom forestSupport vector machineVDP::Teknologi: 500Tsetlin MachineXAIHardware and ArchitectureControl and Systems EngineeringSignal ProcessingElectronicsTsetlin automataAlgorithm
researchProduct

Using Tsetlin Machine to discover interpretable rules in natural language processing applications

2021

Tsetlin Machines (TM) use finite state machines for learning and propositional logic to represent patterns. The resulting pattern recognition approach captures information in the form of conjunctive clauses, thus facilitating human interpretation. In this work, we propose a TM-based approach to three common natural language processing (NLP) tasks, namely, sentiment analysis, semantic relation categorization and identifying entities in multi-turn dialogues. By performing frequent itemset mining on the TM-produced patterns, we show that we can obtain a global and a local interpretation of the learning, one that mimics existing rule-sets or lexicons. Further, we also establish that our TM base…

Artificial intelligenceComputer sciencebusiness.industryNatural language processingRule miningcomputer.software_genreInterpretable AITheoretical Computer ScienceSemantic analysesComputational Theory and MathematicsMulti-turn dialogue analysesArtificial IntelligenceControl and Systems EngineeringArtificial intelligencebusinesscomputerVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Natural language processing
researchProduct

Toward a Collective Agenda on AI for Earth Science Data Analysis

2021

In the last years we have witnessed the fields of geosciences and remote sensing and artificial intelligence to become closer. Thanks to both the massive availability of observational data, improved simulations, and algorithmic advances, these disciplines have found common objectives and challenges to advance the modeling and understanding of the Earth system. Despite such great opportunities, we also observed a worrying tendency to remain in disciplinary comfort zones applying recent advances from artificial intelligence on well resolved remote sensing problems. Here we take a position on research directions where we think the interface between these fields will have the most impact and be…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesGeneral Computer Science530 PhysicsInterface (Java)Computer Vision and Pattern Recognition (cs.CV)Earth sciencedata analysisComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologiesearth observation02 engineering and technology01 natural sciencesEnvironmental scienceData modelingFOS: Electrical engineering electronic engineering information engineeringClimate science1700 General Computer ScienceElectrical Engineering and Systems Science - Signal ProcessingElectrical and Electronic EngineeringInstrumentation021101 geological & geomatics engineering0105 earth and related environmental sciences11476 Digital Society Initiative3105 Instrumentation2208 Electrical and Electronic Engineering1900 General Earth and Planetary SciencesDeep learninginterpretable AIRemote sensingartificial intelligencehybrid modelsEarth system scienceAIRemote sensing (archaeology)10231 Institute for Computational ScienceGeneral Earth and Planetary SciencesPotential gameDisciplineIEEE Geoscience and Remote Sensing Magazine
researchProduct

Advancing Deep Learning for Earth Sciences: From Hybrid Modeling to Interpretability

2020

Machine learning and deep learning in particular have made a huge impact in many fields of science and engineering. In the last decade, advanced deep learning methods have been developed and applied to remote sensing and geoscientific data problems extensively. Applications on classification and parameter retrieval are making a difference: methods are very accurate, can handle large amounts of data, and can deal with spatial and temporal data structures efficiently. Nevertheless, several important challenges need still to be addressed. First, current standard deep architectures cannot deal with long-range dependencies so distant driving processes (in space or time) are not captured, and the…

Computer scienceEarth sciencehybrid modeling0211 other engineering and technologies02 engineering and technology010501 environmental sciencesSpace (commercial competition)01 natural sciencesData modelingInterpretable AIPredictive modelsLaboratory of Geo-information Science and Remote SensingMachine learningearth sciencesLaboratorium voor Geo-informatiekunde en Remote Sensing021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilitybusiness.industryDeep learningPhysicsSIGNAL (programming language)Data modelsdeep learningComputational modelingDeep learningEarthRemote sensingPE&RCartificial intelligenceTemporal databaseEnvironmental sciencesCausalityArtificial intelligencebusiness
researchProduct

Extending the Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability

2020

Despite significant effort, building models that are both interpretable and accurate is an unresolved challenge for many pattern recognition problems. In general, rule-based and linear models lack accuracy, while deep learning interpretability is based on rough approximations of the underlying inference. Using a linear combination of conjunctive clauses in propositional logic, Tsetlin Machines (TMs) have shown competitive performance on diverse benchmarks. However, to do so, many clauses are needed, which impacts interpretability. Here, we address the accuracy-interpretability challenge in machine learning by equipping the TM clauses with integer weights. The resulting Integer Weighted TM (…

FOS: Computer and information sciencesBoosting (machine learning)Theoretical computer scienceinteger-weighted Tsetlin machineGeneral Computer ScienceComputer scienceComputer Science - Artificial Intelligence0206 medical engineeringNatural language understandingInference02 engineering and technologycomputer.software_genre0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTsetlin machineVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550InterpretabilityArtificial neural networkLearning automatabusiness.industryDeep learningGeneral Engineeringinterpretable machine learningrule-based learninginterpretable AIPropositional calculusSupport vector machineArtificial Intelligence (cs.AI)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESXAIPattern recognition (psychology)020201 artificial intelligence & image processinglcsh:Electrical engineering. Electronics. Nuclear engineeringArtificial intelligencebusinesslcsh:TK1-9971computer020602 bioinformaticsInteger (computer science)
researchProduct